In [ ]:
import json
from utils import load_items
with open('parameters.json', 'r') as infile:
params = json.load(infile)
RESIZE_X = params['resize']['x']
RESIZE_Y = params['resize']['y']
ITEM_FOLDER = params['item_folder']
BACKGROUND_THRESHOLD = params['background_threshold']
items = load_items(ITEM_FOLDER)
In [ ]:
import cv2, glob
from utils import imread_rgb, item_mask
def worker(item):
folder = ITEM_FOLDER + '/' + item + '/'
files = glob.glob(folder + '*.png')
for filename in files:
image_RGB = imread_rgb(filename)
if not image_RGB is None:
image_RGB = cv2.resize(image_RGB,(RESIZE_X,RESIZE_Y))
mask = item_mask(image_RGB, BACKGROUND_THRESHOLD)
cv2.imwrite(filename[:-4]+'_mask.pgm', mask)
In [ ]:
%%time
from multiprocessing import Pool
print('Computing mask of images')
print('* resized to %d x %d' % (RESIZE_X,RESIZE_Y))
print('* background threshold %d' % (BACKGROUND_THRESHOLD))
pool_size = 6
pool = Pool(pool_size)
result = []
for item in items:
result.append( pool.apply_async(worker, (item,)) )
pool.close()
pool.join()
for r in result:
r.get()
In [ ]:
import cv2, glob, numpy as np
from utils import imread_gray
item_view = []
area = []
for item in items:
folder = ITEM_FOLDER + '/' + item + '/'
files = glob.glob(folder + '*_mask.pgm')
for filename in files:
mask = imread_gray(filename)
if not mask is None:
item_view.append(filename)
area.append( np.sum(mask==255) )
In [ ]:
from matplotlib import pyplot as plt
%matplotlib inline
plt.hist(area,bins=30); plt.ticklabel_format(style='sci', axis='x', scilimits=(0,0));
In [ ]:
[(a, str(iv.split('/')[-1][:-9])) for a, iv in sorted(zip(area,item_view), reverse=True) if a>160000]
In [ ]:
[(a, str(iv.split('/')[-1][:-9])) for a, iv in sorted(zip(area,item_view), reverse=True) if a<30000]
In [ ]:
from matplotlib import pyplot as plt
%matplotlib inline
In [ ]:
import cv2, numpy as np
from ipywidgets import interact
from utils import imread_rgb, imread_gray
def load_and_plot(item,view):
prefix = ITEM_FOLDER + '/' + item + '/' + item + '_' + view
filename = prefix + '.png'
image_RGB = imread_rgb(filename)
if not image_RGB is None:
image_RGB = cv2.resize(image_RGB,(RESIZE_X,RESIZE_Y))
plt.subplot(121); plt.imshow(image_RGB); plt.axis('off');
filename = prefix + '_mask.pgm'
mask = imread_gray(filename)
if not mask is None:
area = np.sum(mask==255)
print('Area: %d' % area)
plt.subplot(122); plt.imshow( mask,cmap='gray'); plt.axis('off');
In [ ]:
views = ['top_01','top-side_01','top-side_02','bottom_01','bottom-side_01','bottom-side_02']
interact(load_and_plot,item=items,view=views);
In [ ]:
for item in items:
for view in views:
print(item + '_' + view)
load_and_plot(item,view)
plt.show()
In [ ]:
from matplotlib import pyplot as plt
%matplotlib inline
In [ ]:
import cv2, numpy as np
from ipywidgets import interact
from utils import imread_rgb, item_mask
def compute_and_plot(item,view):
prefix = ITEM_FOLDER + '/' + item + '/' + item + '_' + view
filename = prefix + '.png'
image_RGB = imread_rgb(filename)
if not image_RGB is None:
image_RGB = cv2.resize(image_RGB,(RESIZE_X,RESIZE_Y))
mask = item_mask(image_RGB, BACKGROUND_THRESHOLD)
plt.subplot(121); plt.imshow(image_RGB); plt.axis('off');
plt.subplot(122); plt.imshow(mask,cmap='gray'); plt.axis('off')
area = np.sum(mask==255)
print('Area: %d pixels' % area)
In [ ]:
views = ['top_01','top-side_01','top-side_02','bottom_01','bottom-side_01','bottom-side_02']
interact(compute_and_plot,item=items,view=views);
In [ ]:
for item in items:
for view in views:
print(item + '_' + view)
compute_and_plot(item,view)
plt.show()